Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436429

RESUMO

Colonization of the upper respiratory tract with Streptococcus pneumoniae is the precursor of pneumococcal pneumonia and invasive disease. Following exposure, however, it is unclear which human immune mechanisms determine whether a pathogen will colonize. We used a human challenge model to investigate host-pathogen interactions in the first hours and days following intranasal exposure to Streptococcus pneumoniae Using a novel home sampling method, we measured early immune responses and bacterial density dynamics in the nose and saliva after volunteers were experimentally exposed to pneumococcus. Here, we show that nasal colonization can take up to 24 h to become established. Also, the following two distinct bacterial clearance profiles were associated with protection: nasal clearers with immediate clearance of bacteria in the nose by the activity of pre-existent mucosal neutrophils and saliva clearers with detectable pneumococcus in saliva at 1 h post challenge and delayed clearance mediated by an inflammatory response and increased neutrophil activity 24 h post bacterial encounter. This study describes, for the first time, how colonization with a bacterium is established in humans, signifying that the correlates of protection against pneumococcal colonization, which can be used to inform design and testing of novel vaccine candidates, could be valid for subsets of protected individuals.IMPORTANCE Occurrence of lower respiratory tract infections requires prior colonization of the upper respiratory tract with a pathogen. Most bacterial infection and colonization studies have been performed in murine and in vitro models due to the current invasive sampling methodology of the upper respiratory tract, both of which poorly reflect the complexity of host-pathogen interactions in the human nose. Self-collecting saliva and nasal lining fluid at home is a fast, low-cost, noninvasive, high-frequency sampling platform for continuous monitoring of bacterial encounter at defined time points relative to exposure. Our study demonstrates for the first time that, in humans, there are distinct profiles of pneumococcal colonization kinetics, distinguished by speed of appearance in saliva, local phagocytic function, and acute mucosal inflammatory responses, which may either recruit or activate neutrophils. These data are important for the design and testing of novel vaccine candidates.


Assuntos
Infecções Pneumocócicas/microbiologia , Sistema Respiratório/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/imunologia , Adolescente , Adulto , Animais , Citocinas , Interações Hospedeiro-Patógeno , Humanos , Cinética , Camundongos , Pessoa de Meia-Idade , Neutrófilos , Nariz/microbiologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Sistema Respiratório/imunologia , Saliva/microbiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
2.
Nat Immunol ; 19(12): 1299-1308, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374129

RESUMO

Colonization of the upper respiratory tract by pneumococcus is important both as a determinant of disease and for transmission into the population. The immunological mechanisms that contain pneumococcus during colonization are well studied in mice but remain unclear in humans. Loss of this control of pneumococcus following infection with influenza virus is associated with secondary bacterial pneumonia. We used a human challenge model with type 6B pneumococcus to show that acquisition of pneumococcus induced early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function was associated with the clearance of pneumococcus. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate immune function and altered genome-wide nasal gene responses to the carriage of pneumococcus. Levels of the cytokine CXCL10, promoted by viral infection, at the time pneumococcus was encountered were positively associated with bacterial load.


Assuntos
Coinfecção/imunologia , Influenza Humana/imunologia , Mucosa Nasal/imunologia , Infecções Pneumocócicas/imunologia , Quimiocina CXCL10/imunologia , Quimiotaxia de Leucócito/imunologia , Método Duplo-Cego , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Streptococcus pneumoniae
3.
Pneumonia (Nathan) ; 10: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29992080

RESUMO

BACKGROUND: The incidence of community-acquired pneumonia and lower respiratory tract infection rises considerably in later life. Immunoglobulin M (IgM) antibody levels to pneumococcal capsular polysaccharide are known to decrease with age; however, whether levels of IgM antibody to pneumococcal proteins are subject to the same decline has not yet been investigated. METHODS: This study measured serum levels and binding capacity of IgM antibody specific to the pneumococcal surface protein A (PspA) and an unencapsulated pneumococcal strain in serum isolated from hospital patients aged < 60 and ≥ 60, with and without lower respiratory tract infection. A group of young healthy volunteers was used as a comparator to represent adults at very low risk of pneumococcal pneumonia. IgM serum antibody levels were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry was performed to assess IgM binding capacity. Linear regression and one-way analysis of variance (ANOVA) tests were used to analyse the results. RESULTS: Levels and binding capacity of IgM antibody to PspA and the unencapsulated pneumococcal strain were unchanged with age. CONCLUSIONS: These findings suggest that protein-based pneumococcal vaccines may provide protective immunity in the elderly. TRIAL REGISTRATION: The LRTI trial (LRTI and control groups) was approved by the National Health Service Research Ethics Committee in October 2013 (12/NW/0713). Recruitment opened in January 2013 and was completed in July 2013. Healthy volunteer samples were taken from the EHPC dose-ranging and reproducibility trial, approved by the same Research Ethics Committee in October 2011 (11/NW/0592). Recruitment for this study ran from October 2011 until December 2012. LRTI trial: (NCT01861184), EHPC dose-ranging and reproducibility trial: (ISRCTN85403723).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...